Abstract

The potential of machine learning (ML) tools for enhancing geotechnical analysis has been recognized by several researchers. However, obtaining a sufficiently large digital dataset is a major technical challenge. This paper investigates the use of transfer learning, a powerful ML technique, used for overcoming dataset size limitations. The study examines two scenarios where transfer learning is applied to tunnel support analysis. The first scenario investigates transferring knowledge between a ground formation that has been well-studied to a new formation with very limited data. The second scenario is intended to investigate whether transferring knowledge is possible from a dataset that relies on simplified tunnel support analysis to a more complex and realistic analysis. The technical process for transfer learning involves training an Artificial Neural Network (ANN) on a large dataset and adding an extra layer to the model. The added layer is then trained on smaller datasets to fine-tune the model. The study demonstrates the effectiveness of transfer learning for both scenarios. On this basis, it is argued that, with further development and refinement, transfer learning could become a valuable tool for ML-related geotechnical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.