Abstract

Objective. This work aims at investigating the response of various thermally stimulated luminescence detectors (TLDs) and optically stimulated luminescence detectors (OSLDs) for dosimetry of ultra-high dose rate electron beams. The study was driven by the challenges of dosimetry at ultra-high dose rates and the importance of dosimetry for FLASH radiotherapy and radiobiology experiments. Approach. Three types of TLDs (LiF:Mg,Ti; LiF:Mg,Cu,P; CaF2:Tm) and one type of OSLD (Al2O3:C) were irradiated in a 15 MeV electron beam with instantaneous dose rates in the (1–324) kGy s−1 range. Reference dosimetry was carried out with an integrating current transformer, which was calibrated in absorbed dose to water against a reference ionization chamber. Additionally, dose rate independent BeO OSLDs were employed as a reference. Beam non-uniformity was addressed using a matrix of TLDs/OSLDs. Main results. The investigated TLDs were shown to be dose rate independent within the experimental uncertainties, which take into account the uncertainty of the dosimetry protocol and the irradiation uncertainty. The relative deviation between the TLDs and the reference dose was lower than 4 % for all dose rates. A decreasing response with the dose rate was observed for Al2O3:C OSLDs, but still within 10 % from the reference dose. Significance. The precision of the investigated luminescence detectors make them suitable for dosimetry of ultra-high dose rate electron beams. Specifically, the dose rate independence of the TLDs can support the investigation of the beam uniformity as a function of the dose rate, which is one of the challenges of the employed beam. Al2O3:C OSLDs provided high precision measurements, but the decreasing response with the dose rate needs to be confirmed by additional experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.