Abstract

An operation of the thyristor-based switches triggered in impact-ionization wave mode has been investigated. The thyristor switch contained two series connected tablet thyristors having a silicon wafer of 56 mm diameter. Applying across the switch a triggering pulse with a voltage rise rate dU/dt of over 1 kV/ns, the thyristors transition time to a conductive state was reduced to shorter than 1 ns. It is shown that the maximum amplitude of a no-failure current is increased with increasing dU/dt at the triggering stage. A possible mechanism of the dU/dt value effect on the thyristors breakdown current is discussed. Under a safety operation regime at dU/dt = 6 kV/ns (3 kV/ns per a single thyristor), the switch discharged 1-mF capacitor, which was charged to a voltage of 5 kV, to a resistive load of 18 mΩ. The following results were obtained: a peak current was 200 kA, an initial dI/dt was 58 kA/µs, a FWHM was 25 µs, and a switching efficiency was 0.97. It is shown also that a temperature of the silicon wafer is one of the main factors that affects on the thyristor switching process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call