Abstract
Tryptophan and tryptophan-based nanomaterials sensors in a solution have been developed to directly evaluate thymine. The determination of thymine has been done via quenching of the fluorescence of tryptophan and tryptophan-based nanomaterials such as graphene (Gr), graphene oxide (GO), gold nanoparticles (AuNPs), gold-silver nanocomposite (Au-Ag NC) in a physiological buffer. As the concentration of thymine rises, the fluorescence of tryptophan and tryptophan/nanomaterials becomes less intense. Trp, Trp/Gr, and tryptophan/(Au-Ag) NC systems' quenching mechanisms were dynamic, but tryptophan /GO and tryptophan/AuNPs' quenching mechanisms were static. The linear dynamic range for the determination of thy by tryptophan and tryptophan /nanomaterials is 10 to 200 μM. The detection limits for tryptophan, tryptophan /Gr, tryptophan /GO, tryptophan /AuNPs, and tryptophan/Au-Ag NC were 3.21, 14.20, 6.35, 4.67and 7.79 Μm, respectively. Thermodynamic parameters for the interaction of the Probes with Thy include the enthalpy (H°) and entropy (S°) change values, were assessed, as well as the binding constant (Ka) of Thy with Trp and Trp-based nanomaterials. A recovery study was conducted utilizing a human serum sample after the addition of the required quantity of the investigational thymine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.