Abstract

Metals and their alloys, except for a few intermetallics, are inherently ductile, i.e., plastic deformation precedes fracture in these materials. Therefore, resistance to fracture is directly related to the development of the plastic zone at the crack tip. Recent studies indicate that the fracture toughness of single crystals depends on the crystallographic orientation of the notch as well as the loading direction. In general, the dependence of crack propagation resistance on crystallographic orientation arises from the anisotropy of (i) elastic constants, (ii) plastic deformation (or slip), and (iii) the weakest fracture planes (e.g., cleavage planes). Because of the triaxial stress state at the notch tips, many slip systems that otherwise would not be activated during uniaxial testing become operational. The plastic zone formation in single crystals has been tackled theoretically by Rice and his co-workers [Rice, J. R., 1987, Mech. Mater. 6, pp. 317–335; Rice, J. R., and Saeedvafa, M., 1987, J. Mech. Phys. Solids 36, pp. 189–214; Saeedvafa, M., and Rice, J. R., 1988; ibid., 37, pp. 673–691; Rice, J. R., Hawk, D. E., Asaro, R. J., 1990, Int. J. Fract. 42, pp. 301–321; Saeedvafa, M., and Rice, J. R., 1992, Modell. Simul. Mater. Sci. Eng. 1, pp. 53–71] and only limited experimental work has been conducted in this area. The study of the stresses and strains in the vicinity of a fcc single-crystal notch tip is of relatively recent origin. We present experimental and numerical investigation of three-dimensional (3D) stress fields and evolution of slip sector boundaries near notches in fcc single-crystal PWA1480 tension test specimens and demonstrate that a 3D linear elastic finite element model, which includes the effect of material anisotropy, is shown to predict active slip planes and sectors accurately. The slip sector boundaries are shown to have complex curved shapes with several slip systems active simultaneously near the notch. Results are presented for surface and mid-plane of the specimens. The results demonstrate that accounting for 3D elastic anisotropy is very important for accurate prediction of slip activation near fcc single-crystal notches loaded in tension. Results from the study will help establish guidelines for fatigue damage near single-crystal notches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.