Abstract
The nozzle exit flowfield was measured at two axial locations with a miniature five-hole probe. Measurements were taken from hub-to-tip, blade-to-blade at 21 radial locations and at two axial locations downstream of the nozzle trailing edge to resolve the flowfield accurately including the nozzle wake, secondary flow region, horseshoe vortex and losses. All three components of the velocity, stagnation pressure, static pressure, and pitch and yaw angles have been resolved very accurately. The wake data seems to indicate that the decay of the wake is faster than the wake of an isolated nozzle row. The cause of this is attributed to the presence of the rotor downstream. A distinct vortex core has been observed near the tip. The indications are that the horseshoe vortex and the passage vortex have merged to produce a single loss core region. Roughly a third of the blade height passage near the tip and a third of the blade height near the hub is dominated by secondary flow, passage vortex and the horseshoe vortex phenomena. Only the middle third of the nozzle behaves as per design. These and other data are presented, interpreted and synthesized to understand the nozzle flowfield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.