Abstract
Phase transformation of tetragonal ZrO2 to monoclinic phase and also increment of bond coat oxidation kinetic (TGO thickening) can substantially restrict the life time of thermal barrier coating systems (TBCs). So, nanostructured and conventional Y2O3 stabilized ZrO2 coatings were evaluated in fused V2O5-Na2SO4 salts during thermal exposure in air. Microstructural characterization showed lower hot corrosion products (monoclinic zirconia, YVO4 crystals) formation and reduction of TGO thickness in thermal barrier coating system consisting of nanostructured Y2O3 stabilized ZrO2 (YSZ) top coat. It was found that inhomogeneities, pores and micro-cracks played a principal role in the molten salts infiltration into the YSZ coating during three steps of hot corrosion process. In the nanostructured YSZ coating with tri-model structure, nano zones which surrounded by fully molten parts could fill the aforementioned defects and could act as barrier for the oxygen and corrosive molten salts penetration into the TBC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.