Abstract

IntroductionThis report describes the isolation and characterization of three new murine mammary epithelial cell lines derived from mammary tumors from MMTV (mouse mammary tumor virus)/activated Neu + TβRII-AS (transforming growth factor [TGF]-β type II receptor antisense RNA) bigenic mice (BRI-JM01 and BRI-JM05 cell lines) and MMTV/activated Neu transgenic mice (BRI-JM04 cell line).MethodsThe BRI-JM01, BRI-JM04, and BRI-JM05 cell lines were analyzed for transgene expression, their general growth characteristics, and their sensitivities to several growth factors from the epidermal growth factor (EGF) and TGF-β families (recombinant human EGF, heregulin-β1 and TGF-β1). The BRI-JM01 cells were observed to undergo a striking morphologic change in response to TGF-β1, and they were therefore further investigated for their ability to undergo a TGF-β-induced epithelial-to-mesenchymal transition (EMT) using motility assays and immunofluorescence microscopy.ResultsWe found that two of the three cell lines (BRI-JM04 and BRI-JM05) express the Neu transgene, whereas, unexpectedly, both of the cell lines that were established from MMTV/activated Neu + TβRII-AS bigenic tumors (BRI-JM01 and BRI-JM05) do not express the TβRII-AS transgene. The cuboidal BRI-JM01 cells exhibit a short doubling time and are able to form confluent monolayers. The BRI-JM04 and BRI-JM05 cell lines are morphologically much less uniform, grow at a much slower rate, and do not form confluent monolayers. Only the BRI-JM05 cells can form colonies in soft agar. In contrast, all three cell lines form colonies in Matrigel, although the BRI-JM04 and BRI-JM05 cell lines do so more efficiently than the BRI-JM01 cell line. All three cell lines express the cell surface marker E-cadherin, confirming their epithelial character. Proliferation assays showed that the three cell lines respond differently to recombinant human EGF and heregulin-β1, and that all are growth inhibited by TGF-β1, but that only the BRI-JM01 cell line undergoes an EMT and exhibits increased motility upon TGF-β1 treatment.ConclusionWe suggest that the BRI-JM04 and BRI-JM05 cell lines can be used to investigate Neu oncogene driven mammary tumorigenesis, whereas the BRI-JM01 cell line will be useful for studying TGF-β1-induced EMT.

Highlights

  • This report describes the isolation and characterization of three new murine mammary epithelial cell lines derived from mammary tumors from mammary tumor virus (MMTV)/activated Neu + TβRII-a TβRIIantisense RNA (AS) bigenic mice (BRI-JM01 and BRI-JM05 cell lines) and MMTV/activated Neu transgenic mice (BRI-JM04 cell line)

  • We suggest that the BRI-JM04 and BRI-JM05 cell lines can be used to investigate Neu oncogene driven mammary tumorigenesis, whereas the BRI-JM01 cell line will be useful for studying transforming growth factor (TGF)-β1-induced epithelial-to-mesenchymal transition (EMT)

  • Activated Neu and TβRII-AS transgene expression in mammary tumors and derived cell lines To provide mammary epithelial cell lines that may exhibit a combination of reduced TGF-β signaling due to TβRII-AS expression, and activated oncogenic pathways due to Neu expression, we isolated two cell lines from tumors from the bigenic MMTV/activated Neu + TβRII-AS mice that we have generated

Read more

Summary

Introduction

This report describes the isolation and characterization of three new murine mammary epithelial cell lines derived from mammary tumors from MMTV (mouse mammary tumor virus)/activated Neu + TβRII-AS (transforming growth factor [TGF]-β type II receptor antisense RNA) bigenic mice (BRI-JM01 and BRI-JM05 cell lines) and MMTV/activated Neu transgenic mice (BRI-JM04 cell line). The ability of TGF-β to inhibit cell proliferation, induce replicative senescence and apoptosis, and maintain genomic stability suggests that it should play a role as a tumor suppressor [1]. Reduced expression of TGF-β type II receptor (TβRII) correlated with high tumor grade within both human breast in situ and invasive carcinomas, and has been associated with an increased risk for invasive breast cancer in women with breast epithelial hyperplastic lesions that lack atypia [3,4]. The current unifying hypothesis, is that TGF-β switches from acting as a tumor suppressor to a prometastatic factor during the course of multistage tumor progression [1,2,7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call