Abstract

Thermophysical properties of base ionic liquid (C10H19F6N2P) (IL) and IoNanofluids (INF) containing different contents of (0.05, 0.1, and 0.5 wt%) multiwalled carbon nanotubes (MWCNTs) and Graphene (Gr) were measured experimentally. INF exhibited augmentation in thermal conductivity, viscosity, and heat capacity respect to the base fluid. Maximum thermal conductivity breakthrough was detected at 39%, 48% of MWCNT-IL and 0.5wt% of Gr-IL, respectively. Eventually, the experimental viscosity and thermal conductivity data were fitted with the existing theoretical models. The findings highlighted that the viscosity of MWCNTs-IL and Gr-IL was in unison with particles aggregation effect (Krieger-Dougherty model) and the both INF effective thermal conductivity are prognosticated by interfacial layer approach with sufficient accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call