Abstract
Renewable dielectric materials have attracted the attention of industries and stakeholders, but such materials possess limited properties. This research focused on studying polylactic acid (PLA)/cellulose acetate (CA) blends produced by 3D printing to facilitate their integration into the electrical insulation field. The dielectric findings showed that a blend containing 40% of CA by weight had a dielectric constant of 2.9 and an electrical conductivity of 1.26 × 10−11 S·cm−1 at 100 Hz and 20 °C while exhibiting better mechanical rigidity in the rubbery state than neat PLA. In addition, it was possible to increase the electrical insulating effect by reducing the infill ratio at the cost of reduced mechanical properties. The differential scanning calorimetry, broadband dielectric spectroscopy, and dynamic mechanical analysis results showed that the PLA plasticizer reduced the energy required for PLA relaxations. These preliminary results demonstrated the benefits of using a combination of PLA, CA, and 3D printing for electrical insulation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.