Abstract

A statistical mechanical based equation of state has been employed to calculate the liquid density of lead, mercury, bismuth and lead-bismuth and lead-lithium eutectic alloys.The equation is basically that of Song, Mason and Ihm [Ihm G, Song Y, Mason EA. J. Chem. Phys.1991; 94: 3839] which is modified by Ghatee and Boushehri. Three temperature dependent parameters are required to use this equation of state. The second virial coefficient B2, an effective van der Waals co- volume, b and a correction factor a. B2 is predicted from a corresponding states correlation with two scaling parameters, melting point temperature, Tm and liquid density at melting point, rm. Liquid densities are predicted from melting point up to several hundred degrees above the melting point. The results are fairly consistent with experiment. In order to evaluate the correlation equation, Tao and Mason equation of state is applied to the above cited liquid metals and liquid density results are compared to the present equation. Obviously, the first equation acts better.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call