Abstract

Detailed experimental investigation of thermal and magnetic properties are presented for Cu(NH3)4SO4·H2O, an ideal uniform Heisenberg spin ½ chain compound. A comparison of these properties with relevant spin models is also presented. Temperature dependent magnetic susceptibility and specific heat data have been compared with the exact solution for uniform Heisenberg chain model derived by means of Bethe ansatz technique. Magnetization isotherms measured as a function of field are analyzed using the numerical results simulated by Quantum Monte Carlo technique. Specific heat as a function of magnetic field (up to 7T) and temperature (down to 2K) is reported. Subsequently, the data are compared with the corresponding theoretical curves for infinite Heisenberg spin ½ chain model with J=6K. Moreover, internal energy and entropy are calculated by analyzing the experimental specific heat data. Magnetic field and temperature dependent behavior of entropy and internal energy are in good agreement with the theoretical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.