Abstract

Energy consumption is rising dramatically at the price of depleting fossil fuel supplies and rising greenhouse gas emissions. To resolve this crisis, barley waste, which is hazardous for the environment and landfill, was studied through thermochemical characterization and pyrolysis to use it as a feedstock as a source of renewable energy. According to proximate analysis, the concentrations of ash, volatile matter, fixed carbon, and moisture were 5.43%, 73.41%, 18.15%, and 3.01%, consecutively. The ultimate analysis revealed that the composition included an acceptable H/C, O/C, and (N+O)/C atomic ratio, with the carbon, hydrogen, nitrogen, sulfur, and oxygen amounts being 46.04%, 6.84%, 3.895%, and 0.91%, respectively. The higher and lower heating values of 20.06 MJ/kg and 18.44 MJ/kg correspondingly demonstrate the appropriateness and promise for the generation of biofuel effectively. The results of the morphological study of biomass are promising for renewable energy sources. Using Fourier transform infrared spectroscopy, the main link between carbon, hydrogen, and oxygen was discovered, which is also important for bioenergy production. The maximum degradation rate was found by thermogravimetric analysis and derivative thermogravimetry to be 4.27% per minute for pyrolysis conditions at a temperature of 366 °C and 5.41% per minute for combustion conditions at a temperature of 298 °C. The maximum yields of biochar (38.57%), bio-oil (36.79%), and syngas (40.14%) in the pyrolysis procedure were obtained at 400, 500, and 600 °C, respectively. With the basic characterization and pyrolysis yields of the raw materials, it can be concluded that barley waste can be a valuable source of renewable energy. Further analysis of the pyrolyzed products is recommended to apply in the specific energy fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.