Abstract

The high thermal stresses generated in the contacting surfaces of a multidisk clutch system (pressure plate, clutch disks, plate separators and piston), due to the frictional heating generation during the slipping, is considered to be one of the main reasons lead to premature failure in the contacting surfaces of clutches. A finite element technique has been used to study the transient thermo-elastic phenomena of multidisk dry clutch. The effect of the sliding speed on the contact pressure distribution, the temperature field and the frictional heat generated along the frictional surfaces are investigated. Analysis has been completed using axisymmetric model to simulate the multidisk clutch system. Ansys software has been used to perform the numerical calculation in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.