Abstract

This paper reports the findings of an investigation on application of secondary thermoelectric (TE) module as a heat exchanger for the primary TE module. The experimental system consists of two commercially available thermoelectric modules arranged thermally in series with a heat sink and an integrated circuit (IC) chip. Heat produced from the IC chip is transferred to the heat sink via the TE modules. A total of nine experimental setups were analyzed using measured temperature data to assess the efficacy of the setups. Experimental evidence shows that the secondary TE module provides additional cooling advantage. The cooling capacity for a system with secondary TE module is 10.95W compared to 3.5W for systems where secondary modules are non-existent. The respective coefficient of performance, COP = Qc/Qp are 2.43 and 0.78. The use of a secondary TE module as a heat exchanger for the primary thermoelectric module is ineffective when compared with liquid-cooled heat exchanger. Results further showed that during early stages of heating and cooling processes, there exists lag in response time between the integrated circuits chip. This could result in over-heating or under-cooling the IC chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.