Abstract
We theoretically study the influence of ytterbium (Yb)-doped fiber parameters on the transverse mode instability (TMI) in aspects of TMI threshold power, average, and total thermal loads. To understand the individual contribution of heat sources, such as photodarkening (PD) and quantum defect (QD), to the thermal loads for TMI, we include the PD fiber as well as non-PD fiber in our study. The thermal load profiles accounting for the PD and QD are separately calculated to identify their relations to the TMI threshold. It is found that the thermal loads at TMI threshold greatly depend on a gain saturation effect and V-number in both the PD and non-PD fibers. Furthermore, even under the same saturation effect, average thermal load at TMI threshold varies with the Yb ion concentration while total thermal load remains unchanged regardless of the Yb concentrations. By providing the parametric studies on TMI behaviors, our study can be found useful when the fiber parameter adjustment is considered for TMI suppression in both the PD and non-PD fibers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.