Abstract

Abstract Thermal Laser Stimulation (TLS) is employed extensively in semiconductor device fault isolation techniques such as TIVA (Thermal Induced Voltage Alteration), OBIRCH (Optical Beam Induced Resistance Change), SDL (Soft Defect localization), CPA (Critical Parameter Analysis), LADA (Laser Assisted Device Alteration), and LVI (Laser Voltage Imaging), etc. To investigate the TLS effects on 7nm FinFET transistor parameters, several transistors of 7nm FinFET inline ET (Electrical Test) macros were tested while employing TLS of various energy values. The test was done in linear mode so that the joule heating caused by the electrical current would be minimized. The experimental results showed that both NFETs and PFETs experienced increased Ioff (Off current) and Sub_Vt_lin_slope (Subthreshold slope), and decreased Ion (On current) and Vt_lin (Threshold voltage) due to elevated temperature of the transistor from TLS. Higher laser power caused greater effects on transistor parameters. The temperature increase on a transistor by TLS depends on the amount of laser energy transferred to, absorbed by, and dispersed by the transistor area. Factors such as the efficient coupling of the SIL (Solid Immersion Lens) with the Silicon backside surface, the transistor size, and the local layout around the transistor will greatly affect the amount of heat delivered to a particular transistor, even while using the same laser power. Thus, setting the laser power for fault isolation with TLS should consider these factors. Our experimental results also showed that the alteration of transistor parameters under TLS was not permanent if the laser power was carefully selected. It should be noticed that during dynamic fault isolation, a transistor may be switching between off, linear mode, and/or saturation mode. The temperature increase on the transistor under TLS may be higher than anticipated due to joule heating if the transistor operation is not confined to the linear region only. Experiments on transistors operating in saturation mode under TLS can be the subject of future work. The results obtained from these experiments can still establish guidelines for laser power settings to be used in the related fault isolation techniques for devices manufactured at the 7nm node so as to achieve non-destructive fault isolation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call