Abstract

This paper evaluates thermal losses and thermal energy transfer in the powertrain components of an electric city bus. A simulation model of an electric city bus was developed in AMESim simulation software. Simulations were carried out in four different driving cycles and in different ambient temperatures. The simulation results show that there is a strong correlation between thermal losses of the inverter and electric motor with the total energy losses. Based on the results, thermal energy transfer from the components to the coolant was analyzed. The thermal energy transfer from the battery to coolant was higher in more demanding driving cycles whereas aggressive driving has more impact on the thermal energy transfer of the inverter and electric motor. In cold ambient temperature, auxiliary power losses increase significantly due to the need of heating. Battery losses are also higher in cold conditions because of the higher internal resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.