Abstract
Experimental investigations and theoretical determination of effective thermal conductivity and viscosity of magnetic Fe3O4/water nanofluid are reported in this paper. The nanofluid was prepared by synthesizing Fe3O4 nanoparticles using the chemical precipitation method, and then dispersed in distilled water using a sonicator. Both experiments were conducted in the volume concentration range 0.0% to 2.0% and the temperature range 20°C to 60°C. The thermal conductivity and viscosity of the nanofluid were increased with an increase in the particle volume concentration. Viscosity enhancement was greater compared to thermal conductivity enhancement under at same volume concentration and temperature. Theoretical equations were developed to predict thermal conductivity and viscosity of nanofluids without resorting to the well established Maxwell and Einstein models, respectively. The proposed equations show reasonably good agreement with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Communications in Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.