Abstract

Motivated by increasingly being used MHD micropumps for pumping biological and chemical specimens, this study presents a simplified MHD flow model based upon steady state, incompressible and fully developed laminar flow theory in rectangular channel to offer the characteristics of MHD pumps for prediction of pumping performance in MHD flow. The nonlinear governing equations of motion and energy including viscous and Joule dissipation are solved numerically for velocity and temperature distributions. To aim this goal a finite difference approximation based code is developed and utilized. In addition, the effects of magnetic flux density, applied electric current and channel size on flow velocity field as well as thermal behavior are investigated in various working medium with different physical properties. Also the entropy generation rate is discussed. The simulation results are in good agreement with experimental data from literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call