Abstract
The problem of deformation and elastoplastic buckling of shells of revolution with a thick-walled elastic core under combined static and dynamic loading is formulated in a two-dimensional planar formulation based on two approaches: full-scale modeling within continuum mechanics and a simplified formulation based on the hypotheses of the theory of shells of the Timoshenko type and the Winkler foundation. Both approaches allow solving the problems of deformation and stability of non-shallow shells on the basis of Timoshenko's hypotheses, taking into account geometric nonlinearities. The statement from the perspective of continuum mechanics makes it possible to approximate the shell in thickness by a number of layers of finite elements. The constitutive relations are formulated in Lagrange variables using a fixed Cartesian coordinate system as a reference one. Kinematic relations are recorded in the metric of the current state. The elastic-plastic properties of shells are described by the theory of plastic flow with isotropic hardening. The equations of motion follow from the balance of the virtual powers of the work. In the first approach, the contact interaction of a shell and an elastic body is modeled by the conditions of nonpenetration along the normal and free slip along the tangent. The nonpenetration conditions are satisfied only in the active phase of the contact interaction; if the contact is broken, they are replaced by conditions on the free surface. In the second approach, the contact interaction of the elastic core with the shell is modeled by the Winkler foundation. Both approaches allow one to describe the nonlinear subcritical deformation of shells of revolution with an elastic core, to determine the limiting (critical) loads in a wide range of loading rates, taking into account the geometric imperfections of the shape. Using both approaches, a numerical simulation of epy contact interaction problem of an elastoplastic cylindrical shell with a thick-walled elastic core at a quasi-static uniform external pressure is carried out. The study of the influence of the thickness and initial deflection of the shell, as well as the stiffness and thickness of the core, on the value of the critical pressure and the form of buckling has been carried out. Based on these calculations, a conclusion was made about a wide range of applicability of the Winkler foundation model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.