Abstract
Abstract In this study, the influences of reinforcement volume fraction and the ratio of the reinforcement particle size to the matrix particle size on the wear behaviour of Al/SiC metal matrix composites were investigated by use of a model function obtained from an artificial neural network. Hardness and ball-on-disc wear tests were applied to Al/SiC composites manufactured via a powder metallurgy method. The results indicate that as the reinforcement volume fraction and the ratio of the reinforcement particle size to the matrix particle size increase, the wear loss decreases except in two cases; in the first case (vol.% ≤ 7.5), as the ratio of the reinforcement particle size to the matrix particle size rises, the wear loss increases and then decreases. In the second case, the decreasing trend of wear loss at high values of volume fraction (≥ 15%) declines and then increases where the value of the reinforcement to the matrix particle size ratio is about 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.