Abstract

Viscoelasticity of reactive magnesia cement (RMC) pastes containing 3 different hydration agents (HCl, Mg(CH3COO)2 and MgCl2) were investigated. Amplitude sweep, frequency sweep and time sweep of RMC pastes were examined within 3 h of hydration. Time-dependent evolution of storage modulus, loss modulus, phase angle, and shear stress were recorded. Measurements of pH, isothermal calorimetry, XRD, TG-DTG and FTIR were used to analyze hydration reaction and products. Addition of hydration agents (HAs) accelerated the growth rate of storage modulus/loss modulus over time. MgCl2 demonstrated the greatest acceleration influence, also reflected in non-destructive structural build-up and buildability related to 3D printing applications. Addition of MgCl2 and HCl advanced the initial setting time of RMC pastes to 100–110 min, during which yield stress reached maximum, and decreased afterwards. Within 3 h of hydration, pastes containing MgCl2 revealed lowest pH, highest heat release and brucite concentration. HAs inclusion precipitated brucite away from MgO particles in the bulk solution, creating a bridge between MgO particles and enabling denser microscopic network structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call