Abstract

CuO and CuS films were coated on AISI 4140 steel samples by Successive Ionic Layer Adsorption and Reaction (SILAR) to investigate their usability as solid lubricant. Wear tests were performed using pin-on-disk tribo-tester under dry and lubricated conditions. The structural, morphological and morphological features of untreated, CuO and CuS coated samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and microhardness, scratch analysis. The surface examinations indicated that needle-like structures formed after coating processes and CuO and CuS films exhibited oleophobic behavior. CuO and CuS thin films reduced the coefficient of friction due to the low shear strength of bonding in transfer films. CuO and CuS films decreased the wear rates in comparison to untreated sample for both dry and lubricated conditions. Also, CuO thin films exhibited better wear resistance than CuS films in dry and lubricated wear tests. The overall results revealed that both CuO and CuS films produced by SILAR can be an alternative to conventional solid lubricants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call