Abstract

AbstractRecent studies have suggested that brown carbon (BrC), an absorbing component in organic aerosol, has strong absorption in the near‐ultraviolet wavelengths, and contributes to regional and global radiative forcing (RF). However, the inclusion of BrC in global climate models leads to significant uncertainties in estimated RF, mainly attributed to uncertain BrC properties and relevant BrC parameters assigned in the model. In this study, we modified the bulk aerosol optical scheme (BAOS) in Community Atmospheric Model version 5.3 by including BrC absorption and evaluated the performance of the modified BAOS by comparing the simulated aerosol absorption with 2‐year surface observational data in two Asian cities, Kanpur, India and Nanjing, China. The mean relative errors in the simulated total aerosol absorption (Babs) and absorption Angstrom exponent in modified BAOS are around 35% in Kanpur and even below 20% in Nanjing. Our results show that the inclusion of BrC remedies the underestimated total aerosol absorption by 20% and 14% on average at Kanpur and Nanjing, respectively, exhibiting a better agreement with ground‐based observations of aerosol absorption at both sites. We also conducted a series of sensitivity experiments to quantify the uncertainties caused by varying parameters related to BrC. The model simulations suggest that the imaginary refractive index of BrC is the most significant factor contributing to the uncertainties in aerosol optical properties calculated in BAOS at the Kanpur site. While in the Nanjing site, both particle size distribution and mixing state have dominant impacts on the calculated aerosol optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.