Abstract
The fuel cell vehicle is one of the essential directions for developing new energy vehicles. But heat dissipation is a critical technical difficulty that needs to be solved urgently. Nano-coolant is a promising coolant that can potentially replace the existing coolant of a fuel cell. However, its thermal conductivity has a significant impact on heat dissipation performance, which is closely related to nanoparticles' thermal conductivity, nanoparticles' volume fraction, and the nano-coolant temperature. Many scholars have created the thermal conductivity models for nano-coolants to explore the mechanism of nano-coolants' thermal conductivity. At present, there is no unified opinion on the mechanism of the micro thermal conductivity of the nano-coolant. Hence, this paper proposed a novel model to predict the thermal conductivity of ethylene glycol/deionized water-based nano-coolants. A corrected model was designed based on the Hamilton & Crosser model and nanolayer theory. Finally, a new theoretical model of nano-coolant thermal conductivity suitable for fuel cell vehicles was constructed based on the base fluid's experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.