Abstract

In this paper, we applied the method developed by Santhosh and Safoora in [Phys. Rev. C 94 (2016) 024623; 95 (2017) 064611] to theoretically investigate the fusion, evaporation-residue (ER) and fission cross-sections of the synthesis of the unknown superheavy [Formula: see text]126 nuclei produced by using the [Formula: see text]Ni + [Formula: see text]Cf and [Formula: see text]Zn + [Formula: see text]Cm combinations. The charge asymmetry, mass asymmetry and fissility of the DiNuclear System (DNS) in the synthesis of the mentioned combinations are also estimated. The calculated results show that the ER cross-sections for the synthesis of the [Formula: see text]126 nuclei are predicted to be much less than 1.0[Formula: see text]fb. In particular, it has been found that there may exist a valley of the ER cross-sections in the synthesis of a superheavy [Formula: see text] element, which produces the [Formula: see text]126 isotope. Subsequently, a model for the mass dependence of the ER cross-section in the synthesis of the [Formula: see text]126 isotopes has been proposed for the first time. On the other hand, the quasi-fission process strongly dominates over the fusion in the two concerned interacting systems. The present results, together with those reported in the previous studies, indicate that the investigated projectile–target combinations are not capable for the synthesis of the [Formula: see text]126 isotopes due to tiny fusion cross-sections (about 2–3[Formula: see text]zb), which go beyond the limitations of available facilities. Further studies are thus recommended to search for alternative interacting systems. In conclusion, this work provides useful information for the synthesis of the gap isotopes [Formula: see text]126, which have not been well studied up to date.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call