Abstract

The pH and NaCl induced swelling response and drug and protein loading of poly(methacrylic acid-co-acrylic acid) microgels (4−10 μm diameter) were measured as a function of cross-link density. The swelling ratio (Q) of the microgels increased linearly from 2 to 12 when the mole fraction of cross-linking monomer decreased from 0.25 to 0.10 (at pH's > 5.3). In the presence of 5 M NaCl (at pH's > 5.3), microgels with cross-linking feed ratios of 0.25 and 0.10 swelled to only 80% and 60% of their maximum volume measured at low ionic strength, respectively. To determine the average pore size in the different cross-linking density microgels (feed ratios = 0.25, 0.20, 0.15, and 0.10), we measured the size cutoffs for the uptake of different sized proteins. On the basis of these size exclusion experiments, we calculated the number of monomers between cross-links in each of these gels to be 6.5, 9.5, 12.5, and 16.5, respectively. These values were used in our theoretical modeling of the network swelling (modified ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call