Abstract

Elastic emission machining (EEM) is a precise surface preparation technique, which uses chemical reactions between the surfaces of the workpiece and fine powder particles. The purpose of this study is to clarify the surface removal process of silicon carbide (SiC) in EEM. A SiC sample with a periodic step-bunched structure was prepared as the initial surface and was flattened by EEM. Optical interferometer and atomic force microscopy (AFM) observations show that the topmost areas on the periodic step-bunched structure in contact with the powder particles are preferentially removed and surface protrusion is gradually reduced as removal depth increases. Moreover, power spectral density analyses reveal that the surface is smoothed in the spatial wavelength range from 0.07 μm to 10 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call