Abstract

All-solid-state lithium batteries that use lithium metal as the anode have extremely high energy densities. However, for lithium metal anodes to be used, lithium dendrite formation must be addressed. Recently, the addition of lithium iodide (LiI) to sulfide solid electrolytes was found to suppress lithium dendrite formation. It is unclear whether the cause of this suppression is the improvement of the ionic conductivity of the solid electrolyte itself or the electrochemical properties of the lithium metal/solid electrolyte interface. In this study, the cause of the suppression was quantitatively elucidated. The effect of the interphase on the dendrite growth of doping LiI into Li3PS4 was determined using X-ray absorption spectroscopy and X-ray computed tomography measurements. The results revealed that LiI-doped Li3PS4 suppressed the dendrite formation by maintaining the interface due to inhibition of the reductive decomposition of Li3PS4. In addition, annealed LiI-doped Li3PS4 showed a greater dendrite suppression ability as the ionic conductivity increased. From these results, we not only found that the physical properties of the lithium metal/solid electrolyte interface and the bulk ionic conductivity contribute to lithium dendrite suppression but also quantitatively determined the proportions of the contributions of these two factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.