Abstract
Reactive oxygen species (ROS), including superoxide anion, are involved in regulating various signaling pathways and are also responsible for oxidative stress. Sensing superoxide anion is of particular importance due to its biological significance. One potential approach is to use Coelenterazine as a chemiluminescent probe for the dynamic sensing of this ROS. In this study, we investigated the superoxide anion-triggered chemiluminescence of native Coelenterazine and two halogenated analogs and found that they showed a ~100-fold enhancement of light emission in aqueous solution, which was significantly reduced in methanol and nonexistent in aprotic solvents. In fact, Coelenterazine showed more intense light emission in aprotic solvents and, interestingly, although the light emission of the analogs seemed relatively unaffected by the solvents, their chemiluminescence was significantly quenched in water compared to methanol and, especially, to aprotic media. This suggests that the quenching effect observed for Coelenterazine is responsible for the differences in aqueous media, rather than an intrinsic enhanced emission by the analogs. In summary, we present Coelenterazine analogs that could serve as a basis for enhanced sensing of superoxide anion, providing information that could further our understanding of this chemiluminescent system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.