Abstract

We report temperature-dependent thermal-conductivity, κ, measurements on the layered quasi-two-dimensional organic superconductors κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BEDT-TTF)2Cu[N(CN)2]Br down to 160 mK. The results for κ-(BEDT-TTF)2Cu(NCS)2 may be consistent with a nodal superconducting (SC) gap structure as indicated by a non-negligible remnant linear contribution when is extrapolated to . For κ-(BEDT-TTF)2Cu[N(CN)2]Br, contrary to expectations, higher κ values are observed in the superconducting regime as compared to the normal, high-field state evidencing a dominant phonon contribution to κ in the superconducting state. The strong increase of κ in the normal state below Tc for both samples indicates strong electron–phonon scattering. Our results highlight the need for thermal-conductivity measurements performed down to significantly lower temperatures to determine the symmetry of the SC gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.