Abstract

ABSTRACTTransition‐metal doped chalcopyrite thin films have been proposed as a suitable absorber material for intermediate band solar cells. In this work, CuGa1−xFexS2 thin films were grown by vacuum co‐evaporation at a substrate temperature of 400 °C with various amounts of incorporated Fe. The optical response of thin films grown on soda‐lime glass was evaluated by transmittance/reflectance measurements. Photovoltaic devices were fabricated from CuGa1−xFexS2 thin films concurrently deposited on Mo‐coated glass substrates using the standard chalcopyrite glass/Mo/absorber/CdS/ZnO device structure. The device characteristics of these solar cells were evaluated by current–voltage and quantum efficiency measurements. For Fe‐containing CuGaS2 films, distinct sub‐gap absorption bands at 1·2 eV and 1·9 eV are detected, which increase in prominence with increasing Fe content. On the other hand, the solar cell parameters were found to deteriorate with increasing iron content, indicating an increase in non‐radiative recombination when high levels of iron are incorporated. However, for the lowest iron content (x = 0·003), an increase in the sub‐gap photoresponse at about 1·9 eV is observed, which is attributed to a combination of sufficient intermediate band absorption and carrier collection at this dilution level. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.