Abstract

The composite layers formed by drying a Fe3O4-SiO2-based colloidal solution were studied. The colloidal solution was obtained by the precipitation of Fe3O4 in the presence of highly dispersed silicon dioxide synthesized by the sol-gel method from a tetraethoxysilane alcohol solution. The microstructure and composition of the layers were analyzed using scanning electron microscopy, energy-dispersive X-ray microanalysis, thermal nitrogen desorption, and Raman spectroscopy. The emphasis was placed on the study of phase transitions in iron oxides under laser radiation. It was found that the tetraethoxysilane content has a substantial influence on the ratio of iron oxide and silicon dioxide in the layer, the specific surface area of SiO2 powders, the threshold laser radiation power necessary to induce the Fe3O4 α -Fe2O3 phase transformation, and on the position of the maximum of the absorption band corresponding to the A1g vibrations in α-Fe2O3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.