Abstract

Simultaneous electron diffraction and mass spectrometry along with a quantum chemical (DFT/B3LYP) calculation are applied to study the molecular structure of yttrium tris-hexafluoroacetylacetonate Y(hfa)3. The superheating of the vapor in a double two-temperature effusion cell shows that up to a temperature of ∼200°C ions containing from one to three metal atoms are formed, and the most intensive ion has the stoichiometry of (Y2L5)+ at a temperature below ∼120°C. The monomer starts to noticeably decompose at temperatures above 330°C.The electron diffraction patterns of monomers are obtained at Texp = 208(5)°C. According to the results of theoretical and experimental investigations, Y(hfa)3 molecule has D3-symmetry. The rotation angle of triangular O-O-O faces with respect to their position in the regular prism is equal to 14.4(1)°C. The values of internuclear distances and valence angles (rh1-geometry) are: r(Y-O) = 2.259(6) A, r(C-O) = 1.263(6) A, r(C-Cr) = 1.413(4) A, r(C-CF) = 1.531(4) A, r(C-F) = 1.344(3) A, O-Y-O = 75.2(2)°, O-C-CF = 113.8(2)°, C-CF-F = 112.4(2)°. The results of quantum chemical calculations are well consistent with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.