Abstract

High-entropy alloys are a new generation of materials that have attracted the interest of numerous scientists because of their unusual properties. It seems interesting to use these alloys in biomedical applications. However, for this purpose, the basic condition of corrosion resistance must be fulfilled. In this article, selected corrosion properties of self-composed high-entropy alloys are investigated and compared with conventional biomedical alloys, that is titanium alloys and stainless steels. Corrosive parameters were determined using the potentiodynamic method. X-ray diffraction studies were performed to characterize the crystal structures. Microstructures of the prepared materials were examined using a scanning electron microscope, and surface hardness was measured by the Vickers method. The results show that investigated high-entropy alloys are characterized by simple structures. Three out of four tested high-entropy alloys had better corrosion properties than conventional implant alloys used in medicine. The Al0.7CoCrFeNi alloy was characterized by a corrosion potential of −224 mV and a corrosion current density of 0.9 μA/cm2; CoCrFeNiCu by −210 mV and 1.1 μA/cm2; TiAlFeCoNi by −435 mV and 4.6 μA/cm2; and Mn0.5TiCuAlCr by −253 mV and 1.3 μA/cm2, respectively. Therefore, the proposed high-entropy alloys can be considered as potential materials for biomedical applications, but this requires more studies to confirm their biocompatibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.