Abstract

Effective exploitation of visible-light unique structural and electronic properties has enormously attracted more researchers for photocatalytic systems. Here, we have fabricated an efficient Bi2WO6-Ag plasmonic hybrid via the photoreduction technique and the obtained materials were well characterized with sophisticated instruments. The BW-Ag-1 catalyst showed the maximum photocatalytic activity for the degradation of cationic dyes rhodamine B (RhB) and malachite green (MG) and the rate constant was 2.6 × 10-2 min-1 and 1.6 × 10-2 min-1 respectively, which is the highest among the synthesized catalysts. The enhanced photocatalytic activity could be ascribed to the synergistic effect of surface plasmon resonance caused by Ag NPs, which could enhance the photoabsorption capability, photon scattering, and plasmon resonance energy transfer, and plasmon-induced hot electron transfer (PHET) ensures better photocatalytic performance. In addition, we have evaluated the influence of Ag on Bi2WO6 microspheres with crystallographic and morphological studies, which depict a negligible change in the crystal structure and an increase in the Ag (FCC) phase with an increase in AgNO3 content and the FE-SEM and mapping images disclose the uniform dispersion of Ag on the surface of Bi2WO6. Trapping experiments revealed that the active species for the degradation of MG were superoxide (˙O2-) radicals as the major reactive species with holes being the main instigative species, which are effectively involved in the photo-induced catalytic reaction. Furthermore, we have studied the effect of different pH of MG initial solution and the plasmonic hybrid catalyst depicted high stability and durability even after five successive cycles. In the electrochemical study, the BW-Ag-1 modified glassy carbon electrode (GCE) demonstrated a superior current density due to the redox behavior and smaller resistance revealing the addition of Ag NPs to be beneficial for the catalytic performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.