Abstract

The problem on the stress-strain state of layered cylindrical shells with bottoms of intricate shape under the action of internal pressure is considered. The elastic system examined is formed by spiral-circular winding. Two variants of the shell bottom structure are investigated. In the first variant, one spiral layer is installed, which leads to great variations in the bottom thickness along the meridian. In the second one, the bottoms are formed according to the zone-winding scheme. The stress state of the shell constructions of the classes considered is determined by solving boundary-value problems for systems of ordinary differential equations. The solution results for cylindrical shells with elliptic bottoms for the two types of winding are given. It is shown that the zone winding leads to smaller deflections and stresses than the conventional ways of reinforcing shell bottoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call