Abstract

In this study, a structurally different drop wing geometry was modelled and its mechanical behaviour was investigated with computer aided analysis software within the finite element method. The tip of the drop wing geometry consists of one large and the other small circles. There were linear line profiles between them. In order to prevent collapse in the wing geometry modelled with the plate structure, a profile in the rigid body structure was created and its effect was investigated. The effect of the wing length and the plate thickness covering the wing was examined and shown in the results. It was defined as the profile material for the steel blade and for the standard features. In the static examinations carried out under the pressure loading applied on the wing, it was determined that the vertical deformation caused by the wing length was not linear, and the stresses that occur with the increasing wing plate thickness form a decreasing function. The stresses that occur in the inside of the wing support were intense in the support area, but also in the bending areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.