Abstract

The transformation behavior from glassy state was investigated in Zr- and Hf-based glassy alloys. The primary phases are metastable face-centered-cubic (fcc) Zr2Ni and fcc Hf2Ni phases in the Zr65Al7.5Ni10Cu17.5 and Hf65Al7.5Ni10Cu17.5 glassy alloys, respectively. By substitution of 5 at.% Pd for Cu, the primary phase changes to an icosahedral quasicrystalline phase in both alloys. It is found that the addition of elements, which have a positive or weak chemical affinity with one of the constitutional elements in the Zr–Al–Ni–Cu and Hf–Al–Ni–Cu glassy alloys, is effective for the precipitation of the icosahedral phase. It is suggested that Pd plays a dominant role in an increase in the number of nucleation sites. Since an icosahedron is contained as a structure unit in the icosahedral, fcc Zr2Ni and fcc Hf2Ni phases, it is implied that these phases are correlated with the local icosahedral order. The high-resolution transmission electron microscopy images of the as-spun Zr65Al7.5Ni10Cu7.5Pd10 and Hf65Al7.5Ni10Cu12.5Pd5 alloys reveal a possibility of the existence of the icosahedral ordered regions. It is therefore, concluded that the icosahedral short- or medium-range order exists and it stabilizes the glassy state in the Zr- and Hf-based multicomponent alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.