Abstract

Soils are heterogeneous and microbial spatial distribution can clearly indicate the spatial characteristics of the soil carbon and nitrogen cycle. However, it is not clear how long-term fertilization affects the spatial distribution of microbial biomass in fluvo-aquic soil. We collected fluvo-aquic soil samples (topsoil 0–7.5 cm and sub-topsoil 7.5–20 cm) using a spatially-explicit design within three 40.5 m2 plots in each of four fertilization treatments. Fertilization treatments were: cropping without fertilizer inputs (CK); chemical nitrogen, phosphorus, and potassium fertilizer (NPK); chemical fertilizer with straw return (NPKS); and chemical fertilizer with animal manure (NPKM). Variables included soil microbial biomass carbon (MBC) and nitrogen (MBN), and MBC/MBN. For both soil layers, we hypothesized that: microbial biomass was lowest in CK but with the largest spatial heterogeneity; and microbial biomass was highest in NPKM and NPKS but with the lowest spatial heterogeneity. Results showed that: (1) Fertilization significantly increased MBC and MBN more in topsoil than sub-topsoil but had no MBC/MBN changes. (2) The coefficient of variation (CV) and Cochran's C showed that variation was largest in CK in topsoil and NPK in sub-topsoil and that variation of topsoil was generally lower than in sub-topsoil. The sample size of the three variables was largest in CK in topsoil but had little variation among the other treatments. (3) The trend-surface model showed that within-plot heterogeneity varied substantially with fertilization (NPKM = NPK > NPKS > CK), but Moran’s I and the interpolation map showed that spatial variability with fertilization followed the order NPK > NPKS > CK = NPKM at a fine scale in topsoil. In sub-topsoil, the trend-surface model showed that within-plot heterogeneity followed the order NPKM = CK > NPK > NPKS and that the fine-scale pattern was NPKM>NPK = NPKS>CK. MBC had the highest spatial heterogeneity among the three variables in both soil layers. Our results indicate that the application of organic fertilizer (straw or manure) reduced the variation of MBC and MBN but increased the spatial variability of MBC and MBN. The spatial variation of the three variables was MBC > MBN > MBC/MBN regardless of whether variation was considered at the plot-scale or the fine-scale in both layers.

Highlights

  • With the increasing application of chemical fertilizers in recent decades, fertilizer efficiency has gradually decreased

  • Concentrations of microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were in the following order: CK < NPK < NPKS = NPKM; there were no significant differences in MBC/MBN among the fertilization treatments (P

  • For MBN, there were no significant differences among NPK, NPKS, and NPKM, but it was the lowest in CK

Read more

Summary

Introduction

With the increasing application of chemical fertilizers in recent decades, fertilizer efficiency has gradually decreased. This phenomenon is especially common in the North China Plain, which is mainly dominated by fluvo-aquic soil [1]. Some studies have shown that fertilization, especially straw return and organic manure, can effectively improve the fertility of fluvo-aquic soil [2, 3]. With the development of precision agriculture, the spatial distribution of soil microorganisms frequently affects efficient use of nutrients [11, 12] and the spatial heterogeneity of microbes strongly influences the infiltration, migration, and adsorption of soil nutrients [13, 14]. Spatial variation in soil can be detected, estimated, and mapped using geostatistical analysis [16], which can help identify changes in spatial trends and characteristics of space in the soil

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.