Abstract

Heavy pollution of particulate matter with an aerodynamic diameter of <2.5 μm (PM2.5) poses increasing threats to the living environment worldwide. Urban agglomerations often lead to regional rather than local air pollution problems. This study explored the underlying global and local spatial driving mechanisms of PM2.5 variations of the 195 county-level administrative units in the urban agglomeration in the middle reaches of the Yangtze River, China, in 2020, using the global spatial regression and geographically weighted regression methods. Results showed that (1) at the county level, there were spatial variations of PM2.5, fluctuating from 20.1263 μg/m3 to 44.8416 μg/m3. (2) The concentrations of PM2.5 presented a positive spatial autocorrelation with a remarkable direct spatial spillover effect. (3) Forestland, grassland, elevation and ecological restoration were negatively correlated with PM2.5 concentrations, the indirect spatial spillover effect of elevation was noticeable. (4) The indirect reduction effects of ecological restoration on PM2.5 concentrations were substantial in the Wuhan urban agglomeration. (5) The reduction effect of forestland, grassland, ecological restoration and elevation on PM2.5 showed a noticeable spatial heterogeneity. In the future, it is suggested regional variability and the spatial spillover effect of air pollution be taken into account in environmental governance. Simultaneously, utilization of the mitigation effect of ecological restoration on PM2.5 is anticipated for the concerted effort in air pollution governance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call