Abstract
AbstractThe removal of gaseous mercury from flue gases from coal-fired power plants is currently an environmental challenge under investigation. Therefore, the main aim of this paper was to evaluate the suitability of faujasite group zeolites (Na-X) to adsorb mercury compounds. Previous, initial tests showed negligible Hg0 uptake by Na-X zeolite, but silver impregnation improved adsorption markedly. Therefore, the testing of mercury adsorption from flue gases into Ag+- impregnated Na-X synthetic zeolite (Ag-X zeolite) derived from coal fly ash was carried out. This material was characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy, X-ray fluorescence and nitrogen adsorption/desorption before being evaluated for mercury removal from exhaust gas. After preliminary mercury adsorption tests (fixed bed) under a nitrogen atmosphere, the adsorbent was examined with a simulated flue gas composition under various conditions, i.e. weight of zeolite, temperature of experiment and zeolite in powder and granulated forms. The removal of mercury was shown to depend on the sorbent texture (powder or granulate), exhaust gas flow rate and contact time, as well as the temperature of the experiment. The Ag-X zeolite tested reduced the level of mercury in the flue gas and, depending on the experimental conditions, long-time mercury breakthrough ranges from 15 to 40% were obtained. The best results for mercury capture were obtained for granulated material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.