Abstract

Some natural gases are toxic because they contain hydrogen sulfide (H2S). The solubility pattern of elemental sulfur (S) in toxic natural gas needs to be studied for environmental protection and life safety. Some methods (e.g., experiments) may pose safety risks. Measuring sulfur solubility using a machine learning (ML) method is fast and accurate. Considering the limited experimental data on sulfur solubility, this study used consensus nested cross-validation (cnCV) to obtain more information. The global search capability and learning efficiency of random forest (RF) and weighted least squares support vector machine (WLSSVM) models were enhanced via a whale optimization-genetic algorithm (WOA-GA). Hence, the WOA-GA-RF and WOA-GA-WLSSVM models were developed to accurately predict the solubility of sulfur and reveal its variation pattern. WOA-GA-RF outperformed six other similar models (e.g., RF model) and six other published studies (e.g., the model designed by Roberts et al.). Using the generic positional oligomer importance matrix (gPOIM), this study visualized the contribution of variables affecting sulfur solubility. The results show that temperature, pressure, and H2S content all have positive effects on sulfur solubility. Sulfur solubility significantly increases when the H2S content exceeds 10%, and other conditions (temperature, pressure) remain the same.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.