Abstract

In this paper, a novel approach for cutting simulation of skive hobbing is presented. Skive hobbing is a process applied for finishing of already hardened gears. The process is characterized by varying tool engagements and very small chip thicknesses. The paper describes the process-modeling and the analysis of the workpiece-tool contact. For efficient modeling, a novel dexel-based method is presented for the description of a gear segment with discretized stock allowance. Characteristic of the method is an analytical description of the target workpiece contour which allows to describe points of the surface by Cartesian coordinates on the winding off. Dexel are oriented orthogonal to the surface of the final workpiece contour. The initial lengths of the dexel describe the stock allowance. By cutting these dexel with a tool, a time- and position-dependent prediction of material removal values, e.g. width of undeformed chip or undeformed chip thickness, is possible. Selected results are presented and interpreted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.