Abstract

The optimum operation strategy for a side-stream external anaerobic self-forming dynamic membrane bioreactor (AnSFDMBR) was investigated by coupling such a system with an up-flow anaerobic sludge blanket reactor. Time-based backwashing with different intervals and transmembrane pressure (TMP)-based backwashing were compared as the operation strategies of the AnSFDMBR. The system performance, extracellular polymeric substance (EPS) accumulation in the dynamic layer and on the membrane mesh of the AnSFDMBR, and the physical properties of the dynamic layer were closely monitored. Both operation strategies achieved stable operation with effluent turbidity less than 5 nephelometric turbidity units with a slowly increasing TMP. However, with the time-based backwashing strategy, the EPS accumulation rate in the dynamic layer was more than 20 times higher than that on the mesh, indicating that frequent backwashing might have a negative impact on the AnSFDMBR. The impacts of EPS accumulation on the membrane mesh were negligible considering the small amount of EPS residual and the large pore size of the mesh. On the contrary, the EPS accumulation in the dynamic layer changed the layer's physical properties and further impacted on the performance of the AnSFDMBR. The accumulation of polysaccharides in the dynamic layer was the main reason for the layer's compactness, which was negatively correlated with the specific surface area and further led to the TMP increase. The polysaccharides in the dynamic layer-to-sludge ratio increased to around 1.6 with only 5 days of time-base operation. With TMP-based operation, it took more than 10 days for polysaccharides in the dynamic layer-to-sludge ratio reaching 1.6. The low TMP increase rate, high effluent quality, and slow EPS accumulation with TMP-based backwashing indicated TMP-based operation is applicable in the studied AnSFDMBR. Nevertheless, the correlation between TMP and the accumulation of polysaccharides should be further investigated to find the optimum TMP for backwashing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call