Abstract

An S3 electron paramagnetic resonance (EPR) signal is observed in a variety of photosystem 2 (PS2) samples in which the oxygen-evolving complex (OEC) has been inhibited. These signals have been proposed to be due to an interaction, S2X+, between the manganese cluster in an oxidation state equivalent to S2 and an organic radical, either oxidized histidine [Boussac et al. (1990) Nature 347, 303-306] or the tyrosine radical Yz+ [Hallahan et al. (1992) Biochemistry 31, 4562-4573]. We report that treatment of PS2 with acetate at pH 5.5 leads to a slowing of the reduction of Yz+ and allows the trapping of an S3-type state on freezing to 77 K following illumination at 277 K. The S3 EPR signal in acetate-treated PS2 has a broader and more complex line shape but otherwise has similar properties to other S3 signals. The addition to acetate-treated samples in the S1 state of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), which allows only a single turnover of the reaction center, causes a large reduction in the yield of the S3 signal. Various anion and cation treatments change the S3 signal line shape and are used to show that acetate probably acts by binding and displacing chloride. We propose that a variety of treatments which affect calcium and chloride cofactor binding cause a modification of the S2 state of the manganese cluster, slow the reduction of Yz+, and allow an S3 EPR signal to be observed following illumination.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.