Abstract

A unique feature of CooA, a heme-containing transcription factor, is that the N-terminal proline is the distal heme ligand in the ferrous state, and this ligand is displaced upon CO binding. To investigate the importance of Pro(2) in CO-dependent DNA binding, several CooA variants that alter N-terminal ligation were characterized. Electronic absorption, electron paramagnetic resonance, and magnetic circular dichroism spectra of these variants provide the most definitive evidence that Pro(2) is the distal ligand in Fe(III) CooA. Furthermore, the functional and spectroscopic properties of these proteins depended on whether a weak ligand occupied the distal heme coordination site: for CooA variants in which distal coordination is disrupted, the DNA-binding affinities and Fe(II)-CO spectral properties showed an unexpected dependence on the order of CO addition and heme reduction. If N-terminal variant samples were incubated with CO before the heme was reduced, the proteins displayed DNA-binding affinities and Fe(II)-CO spectral characteristics similar to those of wild-type (WT) CooA. However, if the same samples were incubated with CO after the heme was reduced, the extent of functional and spectral similarity to WT CooA negatively correlated with the amount of high-spin heme present in the ferric state. From these data, it was inferred that the absence of a distal heme ligand in the ferric state prevents WT-like CO binding to the ferrous state, and it was hypothesized that correct CO binding is inhibited by the collapse of the distal heme pocket upon reduction. Together with the observation that L116H CooA, a variant in which His(116) replaces Pro(2) as the distal heme ligand, binds CO more slowly than WT CooA, these data indicate that the presence of a weak distal heme ligand, not specifically ligation by the N-terminal proline, is crucial for proper function. The role of Pro(2) in CooA is apparently to direct CO to bind on the distal side of heme and to help maintain the integrity of the distal heme pocket during the redox-mediated ligand switch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call