Abstract
New generation BCR-ABL1 TKIs raised attention regarding their adverse effects, including hepatotoxicity. Indeed, bosutinib and nilotinib were associated with severe hepatotoxicity compared with imatinib. Moreover, ponatinib has a boxed warning due to its potential to cause inflammatory liver damage, even death. However, the underlying mechanisms remain unclear. This study aimed to investigate the role of NLRP3 inflammasome activation in the underlying mechanism of ponatinib and bosutinib-induced hepatotoxicity. Furthermore, we determined the initiating event of this adverse outcome pathway by measuring the levels of reactive oxygen species as well as mitochondrial membrane potential in AML12 cells. The results demonstrated that ponatinib or bosutinib markedly inhibited cell viability and caused cytosolic membrane damage in cells. Moreover, drugs (IC50) dramatically induced oxidative stress and mitochondrial membrane potential disruption, which led to upregulation in the expression levels of NLRP3 inflammasome-related genes and proteins, activation of NLRP3 inflammasomes, cleavage of gasdermin-D and caspase-1, secretion of IL-1β, and cytosolic membrane damage. Furthermore, MCC950, a well-known specific inhibitor of NLRP3 inflammasome, and antioxidant N-acetyl-l-cysteine reversed the effects of drugs on the NLRP3 signaling pathway and cytosolic membranes. In summary, NLRP3 inflammasome activation is involved in new-generation BCR-ABL1 TKIs-triggered hepatotoxicity. Mitochondrial damage and reactive oxygen species accumulation were significant upstream signaling events in this signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.