Abstract

This work investigates the effect of defects on the electron density profiles of nanowire FETs with a rectangular cross-section. It also presents a framework for the discretization of the nanowire channels with defects. A self-consistent procedure using Schrodinger-Poisson solver with density matrix formalism calculates the local electron density profiles. The local electron density decreases due to defect-induced scattering potentials. The electron density profiles vary according to the nature of the intrinsic defects. The effect of defect-induced potentials on the output characteristics of the nanowire FET device is studied using the non-equilibrium Green’s function (NEGF) methodology. An increase in scattering potential in the nanowire channel causes a considerable decrease in the saturation voltage and current. This results in a faster saturation which changes the overall device performance. Hence, defect-controlled channels can be utilized to fabricate FETs with desired characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.